Fatigue of mineralized tissues: cortical bone and dentin.
نویسندگان
چکیده
Gaining a mechanistic understanding of the mechanical properties of mineralized tissues, such as dentin and cortical bone, is important from the perspective of developing a framework for predicting and preventing failure of teeth and whole bones, particularly with regard to understanding the effects of microstructural modifications from factors such as aging, disease, or medical treatments. Accordingly, considerable research efforts have been made to determine the specific mechanisms involved in the fatigue and fracture of mineralized tissues, and to discover how these mechanisms relate to features within the respective microstructures. This article seeks to review the progress that has been made specifically in the area of fatigue, focusing on the research that moves our understanding beyond simple fatigue life (S/N) concepts and instead addresses the separate mechanisms for microdamage initiation, crack propagation, and in the case of bone, repair and remodeling.
منابع مشابه
Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin.
As cyclic fatigue is considered to be a major cause of clinical tooth fractures, achieving a comprehensive understanding of the fatigue behavior of dentin is of importance. In this note, the fatigue behavior of human dentin is examined in the context of the Kitagawa-Takahashi diagram to define the limiting conditions for fatigue failure. Specifically, this approach incorporates two limiting thr...
متن کاملAging and Fracture of Human Cortical Bone and Tooth Dentin
Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms, which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms, which function pr...
متن کاملOn the origin of the toughness of mineralized tissue: microcracking or crack bridging?
Two major mechanisms that could potentially be responsible for toughening in mineralized tissues, such as bone and dentin, have been identified-microcracking and crack bridging. While evidence has been reported for both mechanisms, there has been no consensus thus far on which mechanism plays the dominant role in toughening these materials. In the present study, we seek to present definitive ex...
متن کاملImmunohistological characterization of newly formed tissues after regenerative procedure in immature dog teeth.
INTRODUCTION In a previous report, we showed that 2 types of mineralized tissues were formed in the canal spaces of dogs after tissue engineering treatments of immature teeth with apical periodontitis: (1) dentin- associated mineralized tissue (DAMT) and (2) bony islands (BIs). The objective of this study was to characterize these mineralized tissues. METHODS The maturation and organization o...
متن کاملPhenogenetic drift in evolution: the changing genetic basis of vertebrate teeth.
Vertebrate mineralized tissues are vital to the adaptive evolution of various traits. Among these traits is the tooth, which consists of two characteristic mineralized tissues, a highly mineralized surface layer (enamel in tetrapods and enameloid in fish) and a softer body (dentin), both supported by basal bone. However, enamel and enameloid are significantly different in development, and denti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2008